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Phase transitions in a confined quasi-two-dimensional colloid suspension
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We have used digital video microscopy to study the equilibrium structure of quasi-two-dimensional suspen-
sions of sterically stabilized uncharged polymethylmethacrylate spheres. The spheres are confined between the
surfaces of a very thin glass cell. Our experiments reveal the existence of an equilibrium hexatic phase as well
as strongly first order liquid-to-hexatic and hexatic-to-solid phase transitions. These observations are in agree-
ment with the predictions of Bladon and FrenkBhys. Rev. Lett74, 2519 (1995] for a confined colloid
suspension in which the pair interaction potential between particles has a hard core, and either a very short-
range attraction or a very short-range step repuldi8®063-651X%97)01901-6

PACS numbedis): 82.70-y

I. INTRODUCTION long-range positional order and long-range bond orientation
order to a phase with short-range positional order and quasi-
From the point of view of everyday experience, one of thelong-range bond orientational order, the so-called hexatic
most commonly observed phase transitions is the melting gbhase. This transition is driven by the dissociation of bound
a solid to form a liquid. In our three-dimensional world this dislocation pairs in the solid. The second transition trans-
transition from the solid to the liquid phase is characterizedorms the hexatic phase to a liquid phase in which both po-
by discontinuous changes in density, enthalpy, and entropitional and bond orientational order have short ranges. This
In the language of thermodynamics, the solid becomes urtransition is driven by the dissociation of individual disloca-
stable with respect to the liquid when the chemical potentiations to form disclinations. Although it is currently preferred,
of the latter becomes more negative than that of the formerthe transition sequence described is not the only possible
the melting temperature and pressure are determined by theechanism for two-dimensional melting. For example, it is
condition that the chemical potentials of the two phases b principle possible for the dislocation unbinding transition
equal when the phases coexist at equilibrium. It is very im+o be preempted by grain-boundary-induced melting, as has
portant to note that for a first order transition such as meltindoeen suggested by Chi]. The most interesting recent de-
this thermodynamic instability occurs before any mechanicalzelopment in the theory of two-dimensional melting is a re-
instability of the solid arises, i.e., there is no mechanicalport, by Bladon and Frenké¥], of the results of simulations
response function of the solid whose frequency continuouslpf a two-dimensional assembly of particles which interact
decreases with temperature, and which reaches zero at thi@ a pairwise additive potential consisting of a hard core
melting point. On the other hand, in a continuous transitiorrepulsion and a very narrow square well attractiona very
between two crystalline forms of a solid, e.g., in the cubic-narrow step repulsignWhen the width of the attractive well
to-tetragonal transition in SrTiQ it is found that the tem- is less than 8% of the hard disc diameter, the system supports
perature and pressure at which the thermodynamic and méwo ordered solid phases with the same packing symmetry.
chanical instabilities occur do coincide. The coexistence region of the first order solid-solid transition
More than 20 years ago it was suggested that the charactkne ends at a critical point, near which critical point density
of the melting transition in two dimensions is fundamentallyfluctuations render the solid phases unstable with respect to
different from that of the melting transition in three dimen- dislocation unbinding, and the system supports a hexatic
sions. Two-dimensional melting is of great theoretical inter-phase. For the case that the square well width is close to the
est, because the type of order that distinguishes solid frorfimiting value for which the low density solid phase becomes
liquid phases is qualitatively different from that in three di- unstable, the hexatic region can extend to the melting line.
mensions[1]. In the three-dimensional case the density-When this occurs the liquid-to-hexatic transition is predicted
density correlation function of the ordered solid phase deto be first order while the hexatic-to-solid transition may be
cays, with increasing particle separation, to a nonzerither first or second order. The KTHNY theory has been
constant value in the limit of infinite separation. This is theextended, by Chou and Nels@8, to account for the essen-
characteristic feature of long-range positional order. In thdial features of the phase diagram found by Bladon and Fren-
two-dimensional case the density-density correlation funckel.
tion of the solid phase decays to zero algebraically in the Given the striking nature of the KTHNY theory predic-
limit of infinite separation, which is the characteristic featuretions, it is not surprising that both experimental and com-
of quasi-long-range order. However, in the two-dimensionajputer simulation studies of two-dimensional melting have fo-
system there exists a special kind of long-range order calledused attention, almost exclusively, on the search for
bond orientational order. According to the Kosterlitz- continuous transitions from the solid phase to the hexatic
Thouless-Halperin-Nelson-Youn@gKTHNY) theory [1-5]  phase and from the hexatic phase to the liquid phase4].
two-dimensional solids melt via sequential continuous phasé&n early computer simulation study of two-dimensional
transitions. The first transition is from the solid with quasi- melting in a system with Coulomb interactiof#10] is con-
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sistent with the predictions of the KTHNY theory, as is astep repulsion We argue in Sec. VI that in the system we
more recent study of a two-dimensional colloid system withstudied the interaction between the polymer brushes coating
Yukawa interaction$12]. The most recent and most exten- the spherical colloid particles provides the necessary short-
sive computer simulation of the melting of a two- range attraction in a small range of interparticle separation
dimensional system of particles which have an interparticlevhere the brushes just begin to interpenetrate.
potential of ther ~*2 form concludes that there are continu-
ous transitions between the solid and hexatic phases and tkhe EXPERIMENTAL METHODS AND CONSIDERATIONS
hexatic and liquid phases, but that the density range in which™
the hexatic phase is stable is very sn{dl8]. Earlier, less The procedure used to prepare monolayer colloidal sus-
definitive computer simulations of the two-dimensional hardpensions and to construct the experimental glass cells was
disc systemand of similar systems with short-range repul- described in our previous papgt5]. Details specific to the
sive interactionslead to the conclusion that two-dimensional work reported in this paper are given below. Monodisperse
melting is a first order transitiofiL4]. PMMA spheres were prepared according to the method of
The extent of experimental testing of the KTHNY predic- Antl et al. [26]. The diameter of the PMMA particles was
tions concerning the character of two-dimensional meltingdetermined to be=0.928 um by scanning electron micros-
has been limited by the difficulty of preparing systems whichcopy. These measurements also confirmed that the particle
are acceptable representatives of the theoretical njd&¢l  size distribution was monodisperse to within 1%. The sur-
Typical representatives of two-dimensional systems ardace of each particle was covered with-800-A oligomeric
monolayers supported on a substrate. In order that a rebrush of poly3-hydroxystearabethat acts to sterically stabi-
system behave as if it were two-dimensional it is necessarize it with respect to aggregation induced by van der Waals
but not sufficient for the range of in-plane correlations toforces. The PMMA particles were suspended in an agueous
greatly exceed the range of out-of-plane correlatift@, sucrose solutio10% by weight to eliminate sedimentation,
and that the interactions between the system and its suppodnd confined between the walls of a thin glass cell. The cell
ing substrate furnish only a weak perturbation to the properwalls were coated with trihydroxyoctadecylsilarieluls-
ties of the system. Nelson and HalpefB] and Young[4] Petrarch, which acts to prevent adsorption of PMMA par-
have shown that a weak incommensurate substrate potentid@tles to the walls. The spacing between the cell walls could
only slightly modifies the character of the solid-to-hexaticbe varied and, for the experiments reported, was set to ap-
transition. Among the interesting changes induced by the poproximately 1.2 particle diametefs-1.2 um). This thin cell
tential of an ordered substrate is long-ranged bond orientaconfiguration constrains the PMMA particle centers to a
tional order in the hexatic phase, and a washing out of th@lane within a small fraction of a particle diameter; we de-
dislocation—disclination unbinding transition when the sub- termined by direct microscopic examination that the PMMA
strate has sixfold symmetry. Also, if the two-dimensionalparticle centers were coplanar to within the depth of focus of
solid monolayer has a preferred orientation with respect tdhe objective(~0.1 um). When the wall separation was
the supporting substrate which is not along a substrate synsmaller than~1.2 um the particles were observed to be im-
metry axis, the melting transition is expected to be Ising-like,mobilized in the plane; when the wall separation was larger
corresponding to the two equivalent ways of orienting thethan ~1.2 um the particles were observed to have out-of-
two-dimensional solid with respect to a substrate symmetrplane motion. No pathological effects were observed when
axis. Experimental studies of the melting of ordered electhe cell wall spacing was set te1.2 um. The properties of
trons supported on the surface of liquid Het,17-19, and these geometrically confined suspensions were studied over
of the melting of an ordered array of charged polystyrenehe reduced two-dimensional density ransfe=po?=0.01—
spheres between two plat¢20-22, are consistent with 0.93.
many of the predictions of the KTHNY theory, but some The digital video microscopyDVM) measurements were
deviations are observed in individual studig3]. A few  made using an Olympus BH3 metallurgical microscope with
other experimental studies give results sometimes in accora 100, numerical aperture 1.2, oil immersion objective. As
and sometimes not in accord with the KTHNY thed24]. already noted, the objective’s depth of focus is a fraction of
This paper reports the results of studies of the structurethe PMMA sphere diameter, so that nonplanar particle con-
and phase transitions in a quasi-two-dimensional suspensidigurations were easily detected. Images of the suspension
of uncharged colloidal spheres in a very thin cell. The parwere captured using an Hitachi charge-coupled device
ticular system we have studied consists of 0.928- (CCD) video camera mounted to the camera eyepiece. The
diameter spheres of pdipethylmethacrylajpe(PMMA) ina  frame frequency of the CCD camera was 30 Hz, while its
cell with wall spacing~1.2 um. The surface of each PMMA shutter speed was one-one-hundreth of a second. The analog
particle was covered with a300-A oligomeric brush of camera output was sent directly to the video port of a Silicon
poly(12-hydroxystearic acidhat acts to stabilize it sterically Graphics(SGI) Indy workstation. The SGI frame grabber
with respect to aggregation induced by van der Waals forcesupplied with the workstation was used to digitize sequences
We find that the solid phase undergoes a first order transitionf 320x240 (and in some cases, 64@80) square pixel
to a hexatic phase, which subsequently undergoes a first oframes. A typical run consisted of 100 frames in sequence,
der transition to the liquid phase. These observations are ioorresponding to roughly 25 Mbyte of data in the case of
agreement with the results of the simulations of Bladon and20x240 size images. All image processing procedures were
Frenkel for an assembly of particles which interact via a pairimplemented using IDL(Research Systems, Inc.a pro-
wise additive potential consisting of a hard core repulsiongramming language optimized for visual data analysis. The
and a very narrow square well attracti¢or a very narrow pixel length was calibrated by imaging a transmission elec-
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tron microscop€TEM) grid of known scale. The aspect ratio
was determined to be0.1 and the calibrated pixel dimen-
sion was 1 pixe+0.174+0.0015um for 320240 size im-
ages and 1 pixet0.177+0.0015um for 640x480 size im-
ages.

A detailed description of the precision with which particle
position can be measured in these experiments can be found
in our previous paper. Briefly, the center-of-mass positions
were determined with 0.1 pixel precision; for the 320
square pixel images the precision of center-of-mass location
was 17.4 nm, while for the 640480 square pixel images it
was 17.7 nm. This precision of the particle location is suffi-
cient to calculate the mean particle densitging the number
of particles in the frame and the pixel-to-length calibration
and the spatial correlation functions with much greater accu-
racy than is reported in any of our tables.

The observable in the DVM experiment is a complete seba
of two-dimensionalN particle trajectories, which can be
combined to define the time-dependent density

FIG. 1. Wide angle view of a sample quasi-two-dimensional
rticle configuration with reduced areal densjt§i=0.83. There
are 9248(~9 K) particles in the field of view; however, approxi-
mately 16 particles are confined to a single layer in the sample cell.
The frame dimension is 1285 um?. Note that the particle density

N
_ is uniform across the field of view, as it is across the major portion
p(rh)=2, o(r=ri(1)). 2D of the sample.

The process of transforming the information contained in aaccurately. On the other hand, if the length of the subblock is
sequence of digitized images into the time-dependent densitymall or comparable to the translational correlation length,
profile described by Eq(2.1) is discussed in our previous the measured correlation functions must scale with the sub-
paper{25]. A more detailed description is given in an article block size. For all the densities we examined, it was found
by Crocker and Grief27]. Given the trajectory data it is a that the functional form of the correlation functions could be
straightforward, though numerically taxing, application of accurately determined from subblocks that contain approxi-
statistical mechanics to calculate either static or dynamienately 2000 particles. In Fig. 2 we plot comparisons of
spatial correlation functions of interest. For the structuralbond-orientational and translational correlation functions
studies presented in this work, only static quantities are extdefined in Sec. I)l based on the~9000 particle(or 9K)
amined. sample shown in Fig. 1 and subblocks made by dividing the
Two key elements in the study of two-dimensional melt-field into four equal and equivalent quadrats2225 par-
ing are the establishment of equilibrium and the ability toticles, or 2.2K. In all cases, we used periodic boundary con-
measure spatial correlation functions of the appropriate ordetitions for the calculations. The solid curves represent the
parameters accurately. As noted by Bagchi, Anderson, andalculated correlation functions of the 9K samples, while the
Swope[13], in the vicinity of a phase boundary exceedingly circles indicate the values corresponding to the 2.2K
large correlation lengths may influence the results of thesamples. The differences in subblock size have no effect on
analysis of any finite-size subsystem presumably in equilibthe computed correlation functions. Furthermore, the enve-
rium with a much larger, although finite, total system. Simi-lope of the translational correlation function decays to unity
larly, long correlation times can lead to bottlenecks duringwithin 10 um; the translational correlation length is on the
the course of equilibration that cause the system to exist imrder of a few particle diameters. Thus for our investigations
long-lived metastable states. the 2.2K samples are sufficiently large to accurately deter-
The total area of our sample cell is a few square centimemine the structural properties of the system. We will discuss
ters. The method we have used to adjust the sample cefligs. 1 and 2 further in Sec. Ill. However, it should be noted
thickness does not achieve uniform separation of the celhat for this sample density the translational correlation func-
walls over the entire cell, but the portion which is thin tion is short ranged while the bond-orientational correlations
enough to constrain the colloid particles to one plane occudecay algebraically, indicative that the phase observed is
pies the larger fraction of the total area of the cell. Indeed, irhexatic.
the systems we studied it was possible to prepare monolayer Our concerns about equilibration were addressed by re-
suspensions comprised of over®Igarticles with a uniform  quiring that consistent, reproducible results be achieved
number density. As an example, Fig. 1 shows a wide anglahile recording data over a 72—168-h period at each sample
view of an instantaneous configuration at the reduced densitgensity. Since the collision time in the highest density sys-
p*=0.83. In this sample configuration there are 9242 partems we studied is approximately 100 ms, this procedure
ticles in the field of view, while the total system size is allowed sufficient time for the system to reach equilibrium.
effectively infinite. Each sample configuration constitutes aFigure 3 shows Voronoi constructions for a sequence of im-
“subblock” of the infinite system. Provided that the sub- ages taken from a 9K particle field with after 72 h of equili-
block size is large compared to the finite translational correbration. Frames A and B are separated by 30 ms, while A
lation length, it is possible to measure the functional forms ofand C are separated by 600 ms. Sixfold-coordinated sites are
the translational and bond orientational correlation functiongepresented as white hexagons, while red and green polygons
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4.0 by quasi-long-range positional order and long-range bond
A . -
3.0k o(r) ] orientational order. At any temperature greater than zero,
sollh ] such a solid in thermal equilibrium will necessarily have a
1'0 m el nonzero density of tightly bound dislocation paig9]. The
0.0 gwwwm’“w guasi-long-range positional order of the solid phase is de-
) stroyed by free dislocations which are generated by disloca-
Y y g y
0 5 10 15 20 tion pair unbinding. The concentration of free dislocations
r (um) increases with increasing temperature until the solid becomes
mechanically unstable, at which point there is a continuous
B 1.5 transition to the hexatic phase; this transition occurs when
1.0¢ 9" 1 the dimensionless combination of elastic constaKtsfalls
0.5 | i : below the numerical value
0.0
-0.5 :4_a(2),U~(,U~+7\):167T 3.0
0 5 10 15 20 kgT 2u+A\ ' '

r(um , . .
(wm) whereyu and\ are the Lameelastic constants aral, is the

FIG. 2. Size dependence of the translational pair correlatio lattice spacing. As a consequence of the Halperin-Nelson-
NN p ) . : P r\(oung renormalization group analysis of the dislocation pair
function(A) and the bond orientational pair correlation functi@& T " ) . . .
unbinding transition, the density-density correlation function

based on particle configurations similar to that shown in Fig. 1. . - . . .
(p*=0.83. The solid curves are the results of calculations that use(!ln the ordered solid phase is predicted to decay algebraically:

the entire~9K particle field, while the circles correspond to an B o N
analysis based on a field 25% this si¢ze2.25K particley The ga(r)=(pc(0)pg(r))=r=—7 with z<9<3. (3.2
dashed curves indicate that the translational pair correlation func- ) ) )

tion is short ranged, and that the correlation in bond orientations i€ IS @ reciprocal-lattice vector of the solid, apg(r) are the
quasi-long-ranged, characteristic of hexatic orgee text, Sec. )l ~ Fourier components of the singlet particle densities

N
indicate fivefold and sevenfold coordination, respectively. A _ iGr sr_r
site that has a coordination number other than six is called a pG(r)_iZl eThar—ry). 3.3
disclination. In any instantaneous configuration, bound dis-
location pairs occur as quartets of alternating fivefold andEquation(3.2) is valid at the first Bragg diffraction peak just
sevenfold disclinations. Each such configuration typicallybelow the dislocation pair unbinding transition. This pre-
also shows the presence of unbound “free” dislocationsdicted behavior of the density-density correlation function of
made up of individual tightly bound fivefold and sevenfold the solid phase is analogous to that for the Kosterlitz-
disclinations. The slow algebraic decay of the bond-Thouless vortex unbinding transition in two-dimensional su-
orientational order in the hexatic phase is due to the presenggerfluids, superconductors aXty' systemq24].
of a small steady-state concentration of unbound disloca- Before the dislocatior-disclination unbinding transition
tions. We observe that dislocations and clusters of dislocaeccurs, the hexatic phase is anisotropic and the bond orien-
tion defects appear and disappear on the time scale of sutational correlation function is predicted to exhibit quasi-
cessive video frames, and that their absolute locations ardeng-range order,
temporally uncorrelated. This can only be possible if bound
dislocations are thermally activated and destroyed on a time (45 (0) (1))
scale much shorter than the experimental sampling time in-96 r= (8(r)d(rj—r)) xr
terval (30 m9. Furthermore, since free dislocations are seen
to appear and disappear between subsequent frames, the paind
ing, unpairing, and diffusion of free dislocations must occur
on time scales shorter than 30 ms. In Sec. IV we will analyze /1 E 6ior )
each of these processes in detail and estimate their associated Yol(ri) = N i € e
energies. This is a crucial issue in establishing the applica-
bility of the KTHNY theory to the behavior of our particular In Eq. (3.5, (r;) is the local bond orientational order pa-
system[28]. rameter, where the indejx counts theith particle’s nearest
neighbors,d(r;;) is the angle between the bond connecting
particlesi and] and an arbitrary fixed reference axis, add
is the number of-j bonds. Similarly, in Eq(3.4) the index
i runs over all particles, andcounts theath particles nearest
Several excellent review articles describing the KTHNY neighbors. Although the translational order is destroyed by a
melting theory have been published over the last decadsmall population of free dislocations, these defects have
[24]; to place our findings into a proper context we briefly much less effect on the bond orientational order. Strandburg
sketch the relevant features of that theory here. The KTHNY24] pointed out that because the bond orientational correla-
theory is based on a description of the solid phase as a déion function of the hexatic phase decays to zero, albeit
formable elastic medium that is, by definition, characterizedslowly, the static structure function should be isotropic in the

“7  with 0<pe<3i (3.9

(3.5

[Il. BOND ORIENTATIONAL
AND TRANSLATIONAL ORDER
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FIG. 3. Voronoi constructions
for a sequence of particle configu-
rations with N~9 K and
p*=0.83. Frames A and B are
separated by 33 ms, while frames
A and C are separated by 660 ms.
The color coding is as follows.
Sixfold-coordinated  sites  are
white, fivefold sites are red, sev-
enfold sites are filled green, four-
fold sites are blue, and eightfold
sites are purple. Defects of all
morphologies appear and disap-
pear on the same time scale as
successive video frames.



642 ANDREW H. MARCUS AND STUART A. RICE 55

TABLE I. Experimental samples. The frame arkas 320x240 pix (2219.5um?). The areal density is
measured in units of particle number per frame area normalized by the particle diateféA].

Number of particles Scattering pattern
inside field of view [as exhibited byS(k)] Thermodynamic state
28 0.011 isotropic dilute liquid
198 0.077 isotropic dilute liquid
622 0.241 isotropic dilute liquid
1300 0.504 isotropic liquid
1498 0.581 isotropic dense liquid
1775 0.689 ~ liquid-hexatic coexistence
1785 0.693 ~ liquid-hexatic coexistence
2142 0.831 sixfold modulation; hexatic
square-root Lorentzian
line shape
2180 0.846 ~ hexatic-solid coexistence
2208 0.857 ~ hexatic-solid coexistence
2247 0.874 sixfold modulation; solid
Lorentzian line shape
2376 0.926 sixfold modulation; solid

Lorentzian line shape

thermodynamic limit for this phase. Nevertheless, finite-sizéeractions. Following the lead given by the simulations of
effects modify the observed form so that the sixfold modu-Bladon and Frenkel, they analyzed the properties of a two-
lations expected from a long-range ordered solid may still belimensional model system in which there is coupling be-
observed in the quasi-long-range ordered hexatic. Théween a first order isostructural solid-solid transition and the
power-law exponenty, given by Eq.(3.4), is related to the elastic deformations that these phases can support. The key
Frank constank 4, notion is that, because the compressibility diverges at the
isostructural transition critical point, near that critical point
the bulk modulus must decrease, and thereby permit an in-
crease in the concentration of free dislocations. In turn, the
increased concentration of free dislocations can induce the
The Frank constant depends on the distortions in the bonfbrmation of a hexatic phase. They show that the critical
angle field; its magnitude reflects the mechanical stabilityexponents of the ordered solid-to-hexatic phase transition are
(manifested as bond orientational ordef the hexatic phase, the same as inferred from the standard KTHNY theory.
much as the elastic constalit determines the limit of me- Table | lists the different sample densities used in our
chanical stability of the solid. The quasi-long-range bondinvestigations and the thermodynamic states we have as-
orientational order of the hexatic phase is destroyed by fresigned to them. Figure 4 displays sample configurations at
disclinations generated by a disclination unbinding. Only asix of these densitieg* =0.58, 0.69, 0.83, 0.86, 0.88, and
very small concentration of disclinations is necessary to re0.93. Proceeding from the lowest to the highest density,
duce the system to an isotropic fluid state. The KTHNY these figures show the system(#) the pure liquid stateB)
theory predicts that the disclination unbinding transition isa state with coexistence between liquid and hexatic phases,
also continuous, and that it occurs when the value of th€C) the pure hexatic phasé)) a state with coexistence be-
Frank constant falls below (72}kgT. Near the disclination tween hexatic and solid phasgg) the solid close to the
unbinding transitiony is expected to approach the value of hexatic-solid transition, an(F) a compressed solid.
0.25. The identities of the pure phases were established by
The KTHNY theory does not preclude the possibility that computing the static correlation functions from statistical av-
the solid may become thermodynamically unstable with reerages of the particle positions. For example, the static struc-
spect to the isotropic fluid phase at a point where it is stillture function was computed from
mechanically stable with respect to dislocation pair unbind-
ing (i.e.,K>16). In this case the core ener@y associated 1 . _
with the formation of a free dislocation must be less than the S(Q=N Z 2 (exdiQ-(R=Rp)]). 37
cutoff 2.84gT, so that a spontaneous proliferation of grain
boundaries is the primary mechanism for reaching the limiin Fig. 5 we show the two-dimensional structure functions
of mechanical stability(which is taken to be the melting corresponding to the sam@) fluid, (B) hexatic, and(C)
point) [6,29]. For this reason, the free dislocation core en-solid phase densities described in Fig. 4. Also shown are
ergy is an important predictor of the melting mechanism. sample Voronoi constructiond®—F) where the patterns of
Chou and Nelson generalized the KTHNY theory to showdefects have been included in the color scheme. The concen-
how defect-mediated melting can be incorporated into theration of bound dislocation pairs in the pure solid phase
schematic phase diagram for particles with short-ranged inelose to the solid-hexatic phase transition is sni&l0.1%)

18kgT
Ne=

K (3.9
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FIG. 4. Sample particle configurations of the
quasi-two-dimensional assembly of PMMA
spheres with frame size 2241 um? and
N~ 2000 particlegsee Table). Each frame rep-
resents an equilibrium state of the systéfy) the
pure liquid statep* =0.58;(B) a state with coex-
istence between liquid and hexatic phases,
p*=0.69; (C) the pure hexatic phase; =0.83;
(D) a state with coexistence between hexatic and
solid, p*=0.86; (E) the solid close to melting,
p*=0.88; and(F) a compressed solighy* =0.93.

so that the dislocation core energy must be larger than the The positional order in the solid phase is seen to decay
2.84;T cutoff predicted by Chui6]. We thus conclude that with increasing particle separation ag ~[see the dotted
this system falls within the regime where the KTHNY theory curve labeledA for g(r) in Fig. 7], while the angular order
should be valid. We return to a more careful consideration ofloes not decay at all. Thus, both the translational and bond
the defect core energies in Sec. IV. orientational correlation functions for the solid phase behave

The sixfold angular symmetry exhibited in Fig. 5B is a consistently within the KTHNY framework. The observed
necessary but not sufficient condition to distinguish thisvalue of the power law exponeny=3, suggests thawithin
phase as hexatic. Our identification is further supported byhe context of the KTHNY theopythe solid is very close to
the very good fit, shown in Fig. 6B, of the transverse angulathe dislocation unbinding transition. It will be shown in Sec.
dependent line shape of the structure function to a squaré/, however, that this density is in fact close to a first order
root Lorentzian(SRL), S(6o)={[6y— x]1>+ «?} Y2 where  solid-to-hexatic transition.
6, is the angular position of the first peak in the static struc- In the hexatic phase we find that the translational order
ture function,y is the in-plane angle that ranges from zero todecays exponentially with increasing particle separation as
27, and « is the SRL angular width. The SRL functional ~exd—r/(1.8 um)], while the angular order decays as these
form of the line shape has been established as a signature olbservations are also in agreement with the predictions of
hexatic ordef30]. Also shown in Fig. 6 are the line shapes KTHNY theory. The observed value for the bond orienta-
of (curveA) the isotropic fluid andcurveB) the dense solid tional power law exponentys=3, suggests tha(again,
phase(which is well fit by a simple Lorentzian function within the context of the KTHNY theonythe system is very

In Fig. 7 are shown the results of our analyses of theclose to a continuous disclination unbinding transition. In
respective pair correlation functions; these results provid¢his case, however, we find that this density is far from a
conclusive evidence for the assignments we have made dfansition to the isotropic fluid and that the hexatic-to-liquid
the character of the pure phases mentioned above. The trarsansition is also strongly first order. In the fluid phase, both
lational correlation functions were obtained by computingthe positional order and the angular order decay exponen-
histograms of the measured distribution of particle separatially with increasing particle separation.
tions from

IV. DEFECT ANALYSIS

g(r)=p* Z JZI 8(ri)éry=r) ). (3.8 As mentioned in Secs. Il and IIl, a necessary condition for

the KTHNY theory to apply to the melting of any experi-
In an analogous fashion, the global bond orientational corremental quasi-two-dimensional system is that the “core” en-
lation functions were computed from Ed8.4) and (3.5). ergy associated with the unbinding of dislocations is larger
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FIG. 5. Computed two-dimensional structure functions correspondiig)tthe pure liquid statep* =0.58;(B) the pure hexatic phase,
p*=0.83; and(C) a compressed soligh* =0.93. Also shown are the Voronoi constructions of sample configurations at the same densities:
(D) p*=0.58, (E) p*=0.83, and(F) p*=0.93. The color coding is the same as that described for Fig. 3. In B)ed vacant particle
appears as a circular bound group of three dislocations.
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FIG. 6. Angular dependences of the line shapes of the two-
dimensional structure functior(gvaluated at the wave vector cor-
responding to the first peaksmal) shown in Figs. 5A-5C. The
curves are displaced on the vertical scale for clarity. Cubve
Kmax=5.2 um L. There is no angular dependence for the isotropic
fluid phase, while the hexatic line shaf@irveB) Kma,=6.2 um™ !
agrees very well with a square-root Lorentz{aplid line, 0.48<[(x
—0.54 rad®+(0.056 rag?] Y2 see text. The solid phasécurveC)
Kmax=6.4 um ™t is well fit to a simple Lorentzian function, 0.00%
—0.54 rad?+(0.025 ragf] .

than Chui’'s[6] predicted cutoff of 2.84gT. In this section
we present a detailed self-consistent analysis of the defect
topologies and energies as a function of particle density.

It is evident from examination of Fig. 3 that all visible
defect species, namely, free dislocations, dislocation pairs, a,
well as other defect topologies, appear and disappear on ttﬁﬁa
time scale of successive wdgo frames. It is also important t C) dislocation glide.
note that their absolute locations are temporally uncorrelated.
From these observations alone, it is possible to conclude that
the essential activated reversible processes, which involvislocation pair;(B) the unbinding or binding of the same
the formation and motion of these defects, occur on timespecies, andC) the translation of a free dislocation. The
scales shorter than the 30-ms sampling time interval. Voronoi polyhedra are superimposed in heavy black lines on

It is useful to consider in some detail the mechanismdop of the triangulated particle configurations. Each ther-
corresponding to the interconversion of these defect specianally activated process involves a change in configuration
under equilibrium conditions. Figure 8 depicts three reversihat results from the motion of as few particles as one, but
ible processeqA) the nucleation or annihilation of a bound may involve the concerted motion of several particles. Such

particle motions are a consequence of thermal fluctuations in
the system. In general, two particles that are not nearest

FIG. 8. Schematic depiction of dynamical reversible processes
t involve defect formation and motiofA) Paired dislocation
ormation or annihilation(B) dislocation unbinding or binding; and

' g(r) ' _ gsl(r) . neighbors can only form a new bond at the expense of break-
10 h A 4 I ing a bond already held between two other particles. The
8 M it s ot 3 relative particle motions associated with the making and
1 AN R ' breaking of bonds are indicated with small arrows. Hence the
61 B 1 2J _________ B nucleation of a dislocation paiFig. 8A) can be viewed as
4 MM@! the simultaneous formation of two sevenfold- and two
c 1 c fivefold-coordinated sites from four original sixfold-
2 ‘ﬂA ] coordinated sites. The resulting distortion in the bond angle
ol ; ; 0 . . . field is localized to the region containing the paired disloca-
0 5 1015 20 0 5 10 15 20 tion. Another important feature is that the lattice vector reg-
r (um) r (um) istry (shown as heavy gray lingss uninterrupted by the

formation of a tightly bound dislocation pair. However, a

. . . , similar fluctuation may give rise to dislocation unbinding

FIG. 7. T lat | and bond tat I lation func-7_. - . . . .
ransiationa’ and bond orientationa correlation 1ine éﬂg. 8B) in which case the distortion of the bond angle field

tions as a function of particle density. The curves have been shifte del lized and the latti . .
vertically for clarity. For both sets of curves, the three pure phase ecomes delocalized and the [attice vector registry Is inter-

are represented with the same densities as given in the previod’%'pted due_ to t.he appearance of two 'nslerted Iat.tlce row ends,
figures. The envelope af(r) for the compressed solitturve A) egch terminating at the flve;fold-coordlnated site of a free
decays algebraicallydotted curve,~r~3), while g¢(r) remains  dislocation. Repetition of this process may lead to further
constant. For the hexatic phageurve B), g(r) decays exponen- Separation of the free dislocations, and subsequently greater
tially {~exd—r/(1.8 um)]}, while gg(r) decays algebraically distortion of the bond angle fieltFig. 8C). The free energy
(~r =Y. In the fluid state(curve C), both correlation functions for a pair of dislocations increases as the logarithm of their
decay exponentially. separation distanc® and is given in elasticity theory by



646 ANDREW H. MARCUS AND STUART A. RICE 55

ticle displacements, the glide mechanism is expected to be
+2E, (4. the dominant process of defect diffusion. An important con-
sequence of the mechanisms described above is that free dis-
whereK is the elastic constant defined in E§.1), E. is the  locations cannot spontaneously disappear, since this would
“core” or internal energy associated with the formation of a involve the disappearance of an entire semi-infinite row end.
free dislocation from the crystad,, is the “core” radius ofa A free dislocation can only be destroyed through binding
free dislocation, andb is the angle between the vector join- with another free dislocation and subsequent annihilation.
ing the dislocations and the Burger’s vector which depends Since the interconversion of defect species occurs under
on the orientations of the dislocations. equilibrium conditions in our system, it is possible to deter-
The mechanism discussed above for the motion of a freeine the changes in free energy, enthalpy, and entropy asso-
dislocation will only allow the defect to translate in a direc- ciated with each of the processes illustrated in Fig. 8 by
tion orthogonal to its axisor Burger’'s vectoy. This type of  statistically sampling the particle configurations. We will
motion is known as “glide.” Translation of a free disloca- make use of the fact that for any given defect transformation
tion in a direction parallel to its axis is called “climb” and, there is a conservation of topology. It is then possible to
since this type of motion must implicitly involve many par- notate each process in general as an equilibrium expression:
|

dislocation
formation or annihilation (4.2)
—> @ dislocation
% @ unbinding or binding 4.3

R
In(a—) —1 cod(¢)

C

kT "

1l

disclination

unbinding or binding “.4

—
‘—.

Equations(4.2), (4.3), and(4.4) can be combined to obtain dislocationg’/[paired dislocations for disclination unbind-
expressions for the direct formation of free dislocations oring [Eq. (4.9], Kc,=[fivefold sited[sevenfold site[free
free disclinations from the undistorted crystal. The expresdislocations. The terms in the square brackets are concen-
sion for free dislocation formation is given by adding thetrations expressed as number fractions. Equafibf may
first two equations: Eq4.2)+Eq. (4.3. The expression for be used to calculate the free energy from data such as that
free disclination formation is given byEq. (4.2 +Eq. (4.3)]  shown in Fig. 3, provided a good statistical sampling can be
+2X[Eqg. (4.9)]. achieved.

The change in free energy is determined according to the We estimate the change in entropy using the expression
formula
(AF°

(nAs Ty 4.8

AG=—KgT IN[Keg, (4.5 AS=—kgln

where K, is the equilibrium constant corresponding to the

process under consideration. For the case of dislocation pawwhere(A{® is the average free area available to the particles
formation [Eq. (4.2)], Ke.=[paired dislocationfsixfold inside a given defect at a certain bulk density, &naé ")
siteg*; for dislocation unbinding[Eq. (4.3)], Keq=[free is the average free area available to the same number of
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TABLE Il. Defect statistics from particle trajectory data) is the average number of defects per frame
in a hundred frame sequendé®®) is the average free defect area expressed in units 8{{fxL7 xm)/pix]
defined in the text, and is the defect number fraction. The total number of particles in the field of view is
given in Table I.

p*=0.83 p*=0.88 p*=0.93
Defecttype  (n) (A () (A¥) () (Af)
Free 5.8 22.0 0.003* 3.3 23.0 0.002+ 1.4 18.5 0.0006*
dislocations +2.2 +1.6 0.0010 +0.4 +2.4 0.0006 +0.8 +2.3 0.0003
Dislocation 15.1 43,5 0.007+ 9.9 44.6 0.004+ 1.1 45.4 0.0005+
pairs +3.4 +2.9 0.0016 *2.4 +2.8 0.0011 +0.8 +5.8 0.0003
5-8-5 4.5 39.6 0.002+ 0.95 38.8 0.0004t 0.5 36.8 0.0002:
dislocations +2.0 +5.9 0.0009 0.9 +6.0 0.0002 +0.6 +6.2 0.0002
fivefold 6.2 8.8 0.003+ 2.8 9.4 0.001*= 0.8 8.1 0.0003-
disclinations +2.1 +0.9 0.0010 1.3 +1.3 0.0005 +1.0 +2.7 0.0001
sevenfold 5.0 13.6 0.003= 2.2 11.9 0.0004+ 0.6 10.1 0.0003+
disclinations +1.4 +19 0.0012 =*0.6 +1.8 0.0003 +1.2 +3.0 0.0001
site 1.9 ~ 0.001= 0.4 ~ 0.0002= 0.3 ~ 0.0001+=
vacancies +0.8 0.0012 +0.6 0.0002 +0.5 0.0003
nondefect 2,116 8.7 0.9892 2,274 9.1 0.9949 2,375 7.8 0.9991

sites

particles confined to sixfold-coordinated sites at the saméocation formation[Eq. (4.2)] while disclination unbinding
bulk density. The average free areas described in(£6) requires only~1kgT more in energy. The linear combina-
were evaluated from the particle coordinates by numericallyions corresponding to free dislocation formation and free
computing the areas of the Wigner-Seitz cells associatedisclination formation are also tabulated. From these values
with individual defects or sixfold-coordinated sites andwe obtain the “core” energies, entropies, and ethalpies as-
subtracting the cross-sectional area of the particlesociated with free dislocation and disclination formation. In-
(Ap=770'2/4). terestingly, the magnitudes of the core quantities appear to
Once the changes in free energy and entropy are knowine very similar for both dislocation and disclination forma-
the change in enthalpy can be calculated from the differencdion at all three particle densities. Since the core enthalpy is
far above the 2.84T cutoff, we conclude that our system
AH=AG+TAS. (4.7 does meet the necessary criterion for the KTHNY theory to
apply to the system we have studied.
The change in enthalpy for a process that occurs at constant
pressure is analogous to thg change in mtt_ernal energy for 8\, COEXISTENCE AND FIRST ORDER TRANSITIONS
constant volume process. Since our experimental system is
held at constant pressure and chemical potential, the changesit was stated previously that we have observed strongly
in enthalpies associated with defect transformations are thfirst order solid-to-hexatic and hexatic-to-solid phase transi-
more relevant quantities. tions. This assertion is qualitatively supported by our obser-
Table Il lists the different defect species considered in ouration that the dynamical behavior of our system is uni-
analysis, the average number of observed occurrences pgrmly distributed at the particle densities we identified as
configuration during a 100-frame sequence, the average frggure phasegsee Sec. )l while there are distinct dynamical
area associated with a particular deféét?e'>, and the num-  heterogeneities at the densities we now identify as coexist-
ber fractions. Also tabulated are the root mean sq@ans)  ence regions. In Fig. 9 are plotted trajectory maps of particle
areas and rms number of occurrences. The analysis was calisplacements corresponding to the particle densities shown
ried out for three particle densities* =0.83, 0.88, and 0.93, in Fig. 4. Each map consists of 20 sequentially linked par-
corresponding to the hexatic phase, the solid phase close tle positions so that the full time duration is 600 ms. Al-
the melting transition, and a high-density solid phase. Thehough the behavior seen in Figs. 9B and 9D is suggestive of
sizes of the frames examined were such that, for each frameo-phase coexistence, bimodal distributidag., in the ve-
sequence, approximately 2000 particles were in the field ofocity autocorrelation functionby themselves do not neces-
view. This information was used to calculate the equilibriumsarily imply this situation. It is instead necessary to demon-
constants associated with E¢4.2—(4.4). Table Il lists the  strate statistical correlations between local quantities such as
changes in free energies, entropies, and enthalpies associaththamical variables and stationary order parameters; such
with each defect transformation. In general, the magnitudepint particle distributions may be used to distinguish be-
of all three quantities increase with increasing particle dentween different coexisting phases at a single bulk density.
sity. It is also seen that dislocation unbindifgqg. (4.3)] Our conclusions are based on an analysis of two local
requires~2kgT more energy(or enthalpy than paired dis- static variables and one local dynamical variable. These are
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TABLE Ill. Defect-free energies, entropies and enthalpies of formation. Energies and enthalpies are
expressed in units dzT. Entropies are in units df;.

p*=0.83 p*=0.88 p*=0.93
Transformation AG AS AH AG AS AH AG AS AH
Eq. (4.2 490 0.22 5.12 543 0.20 5.63 7.60 0.38 7.98
paired dislocation +0.2 +0.2 0.2 +0.2 =*0.2 +0.2
formation
Eq. (4.3 6.88 0.46 734 755 0.46 8.01 7.24 0.35 7.59
free dislocation +0.2 +0.2 +0.2 *0.2 *+0.5 +0.5
unbinding
Eq. (4.2 +Eq. (4.3 11.79 0.68 1246 1298 0.66 13.64 14.84 0.73 15.57
free dislocation +0.3 +0.3 +0.4 +0.4 +0.5 +0.5
formation
“core” quantities 5.90 0.34 6.23 6.49 0.33 6.82 7.42 0.36 7.78
per free dislocation
Eq. (4.9 577 0.44 6.21 6.79 0.28 7.07 8.80 -0.12 8.68
free disclination +0.2 +0.2 +0.2 +0.2 +0.7 +0.7
unbinding
[Eq. (4.2+Eq. (4.3)] 23.33 156 2489 2656 1.22 27.78 32.44 0.49 32.93
+2XE(q. (4.9 +0.2 +0.2 +0.4 +04 =*0.9 +0.9
free disclination
formation
“core” quantities 5.83 0.39 6.22 6.64 0.30 6.94 8.11 0.12 8.23

per free disclination

the local bond orientational order parametgg(r;), defined the joint probability distributiorP(#4(r;),p(r;)). That is, the
by Eq. (3.9, the local areal density, which we define as  fluctuations in the two order parameters will appear to be

correlated.
1 Unfortunately, because our observation window contains
p(ri)= p_\l (5.3) a finite number of particlesN~2000), fluctuations of the

order parameter valugsvhich go asN™*?) will cause sig-
and the local characteristic time required for a particle tonificant overlap between closely spaced peaks that appear in

diffuse a distance equal to its diameter, the distributions ofg(r;) and p(r;). For this reason we
consider slightly different local correlation functions, each
o? defined as the absolute value of the projection of the order
(=5 Ak (5.2 parameter onto a local average of the same function over
s nearest neighbors, namely,
with
1 1/2
L Ad(ri(D)=r;(0)]3) My, (ri)= |'ﬁe(ri)|ﬁ; |¢6(rj)|} (5.9
Ds(ri)=tlm 2 T : (5.3
and

In Eq. (5.1), A; is the area of the Voronoi polyhedron as-

signed to particle. The Voronoi polyhedron is a generaliza-

tion of the Wigner-Seitz cell which is the simplest possible m,(ri)=

unit cell for a two-dimensional system. In E&.3), D(r;) is

the asymptotic temporal limit of a locally defined self-

diffusion coefficient. We have previously shoW@l] that, where the inde) counts theith particlesn nearest neigh-

for our systemD(r;) reaches its asymptotic value within 20 bors. The values of the nearest-neighbor correlation func-

experimental sampling time interval§00 mg. tions defined by Eq95.4) and(5.5) are expected to be more
The stationary order parameteigg(r;) and p(r;), both  sensitive to the environments of particles which are not close

have magnitudes that are largest in the ordered solid phasty a phase boundary than the local order parameters them-

their values are considerably smaller at liquid densities. Ifselves, because the local correlation functions are maximized

the system exists as a pure phase, fluctuations in both ordésr particles that are both well orderédr dens¢ and have

parameters are expected to occur randomly and to be uncanearest neighbors that are also well ordef@ddensg In a

related with one another. On the other hand, if two phasesimilar spirit to that used in the definitions given by Egs.

coexist at the same bulk density the constituent particles of5.4) and(5.5), we also define a nearest-neighbor correlation

the two phases will separately contribute to different peaks iriunction for the characteristic time

1/2

: (5.5

p(ry) E 2 p(rj)
n

]
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FIG. 9. Particle trajectories as a function of
density. Line segments connect the particle posi-
tions between successive video frames. The dura-
tions of these sequences are for 20 frames or 660
ms. The densities are the same as those given in
Fig. 4. The self-displacements of the ensemble of
particles are seen to be uniform for the cases of
the pure phasefframes A, C, E, and } while
they are inhomogeneous for the densities that
represent coexistend&ames B and D

12 and 0.85 which lie, respectively, within the fluid-hexatic and

(5.6) hexatic-solid coexistence regions. The dotted lines indicate
the values of the cutof we have chosen to distinguish
between the two peaks. Note that the peak widths and posi-
tions corresponding to the hexatic components are, within
statistical error, the same as that for the distributions charac-
teristic of the pure hexatic phase, shown in Fig. 10.

1

Tiﬁ; Tj

m,=

It has been shown by Larsen and GIii8g] that the joint
distribution P(|¢ss|,m,,) is clearly bimodal in systems that

exhibit solid-liquid coexistence. They classify a particle lo-

ggaedditiga rF:]OSI(trl%ﬂJr |a IZ (?ilrg%ng tsc;tﬁzsegowhgrhéa:sies |;nthe To demonstrate that the bimodal fluctuations are corre-
N Yer 17 7 IVBAT ' . lated between the different order parameters, we identify the
empirically determined constant that bounds the two distriyy5icles that contribute to the separate peaks in the bimodal
butions in them%'WGl plane. If the above-stated condition igriptions, Figure 12 shows a comparison of the particle
is not satisfied, the particle located at positida assigned to assignments we have made according to the analysis de-
the fluid phase. . . o scribed above using Voronoi constructions of the particle
For the data sets with particle densities in the rangeonfigurations. Figures 12A, 12B, and 12C correspond to a
p*=0.58-0.93, we have calculated the joint distributionsparticle density that lies in the pure fluid region of the phase
P(p,m,), P(|#el,m, ), andP(7,m,). In Fig. 10 are shown diagram (p*=0.58, while Figs. 12C, 12D, and 12E
two-dimensional scatter plots of these distributions taker(p* =0.83 correspond to the hexatic phase region. Similarly,
from a single-particle configuration at two particle densitiesFigs. 13A, 13B, and 13C display results of the analysis for
we identified as lying in the fluid and hexatic regions of thethe fluid-hexatic coexistence regigp* =0.69, while Figs.
phase diagranip* =0.58 and 0.83, respectivelyFor both  13C, 13D, and 13Hp*=0.85 correspond to the hexatic-
densities, it can be seen that all three curves are well represolid coexistence region. The gray scale shading indicates
sented as single distributions. A similar behavior was obthe partitioning of the particles between pure phases; the
served for the distributions at densities characteristic of thdluid phase is labeled white, the hexatic phase is labeled light
pure solid phase. Clearly, these distributions are very differgray, and the solid phase is labeled dark gray. In Figs. 12,
ent from the bimodal distributions seen at bulk densities cor13A, and 13D, the assignment of particles to phases was
responding to coexistence regions. For example, in Fig. 1inade according to an analysis of the local densifies,
we show joint distributions for particle densitig§=0.69  P(p,m,)], while in Figs. 12, 13B, and 13E, the assignment
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FIG. 10. Two-dimensional scatter plots of the three local order parameters used in our apgly3isiyg(ri), and 7(r;), vs their
nearest-neighbor averages,, my, , and m. for the pure liquid(p* =0.58, plots A, B, and Cand hexatidp* =0.83, plots D, E, and F
phases. In all cases, the density of points is well described as a single distribution. The dashed lines indicate the value of i@ setstant
to distinguish between possible coexisting phases in the systems. Theéy)dret, (B) 1.4, (C) 5.2,(D) 1.8, (E) 1.4, and(F) 65.

was entirely based on an analysis of the local bond orientan Eq. (5.7), n, is the number of particles assigned to phase
tional order parametef$(|4g|,m,)1; in Figs. 12, 13C, and  «, ng is the number of particles assigned to phad,

13F, the assignments are based on an analysis of the local|p* — p5|, andlz=[p* —p%|. The transition densitieg,
correlation times P(7,m,)]. For both pure phases shown in and pj; are found by examining separately the previously
Fig. 12, the three order parameter analyses are unique, whilgetermined binary components of the local density distribu-
for the coexistence bulk densiti¢Big. 13, the three analy- tions. In Fig. 15 we show histograms of the local order pa-
ses give nearly the same results. Thus, at the coexistenggmetem(ri), at particle densities* =0.689(Fig. 15A) and
densities, the partitioning of the distributic_)ns in the three0_846(|:ig. 15B). Each figure displays the total density dis-
order parameters do not occur randomly with respect to Ongipytion and the binary component distributions. The solid
another. We therefore conclude that two phases, each Wity es associated with the component data sets are linear

their own _d_istinct average pr_operties,_qoexist under equilib1eas’[ square fits of Gaussian functions to the distributions,
r'“%gﬁﬂg:{?&i ?L;hiifnﬂ?;mf ;jeesrl]JSItlge:f. our analvsis b while the solid curves passing through the total density dis-
) : : - analysi ytributions are the sums of the component Gaussian fits. The
computing the intersection of all three joint distributions: peak positiongindicated with dashed lingindicate the tran-
P m, )NP(p,m )NP(7,m). In Fig. 14 are shown " o ) : .
(e, wg) NP(p.m,) NP (7. M) 9 sition densities, while the area under each Gaussian function

\/lorondo[ c'(:)_nstérlucfgiﬁns ?f theh partiplg_ C?nfi%ﬁration_s dis'i% proportional to the amount of the respective phase. In Figs.
played In Fig. 4. The color scheme indicates the assignmeniss o4 150 we show the results of a similar analysis using
of particles to phases as described in Figs. 12 and 13,

though the assignments are now made according to the interr-]e bond orientational order parameter. See Table IV for the

section described above values of all parameters.
Our conclusion that the particle densities examined in Fig, Table IV displays the peak positions and widths deter-

mined from our analysis as a function of particle density.
“he values corresponding to the component peaks of the

ported by the consistency of our results with the lever rul distributions exhibiting coexistence are also given. In Table

. . : the ratiosl /I ; andng/n,, estimated from the analysis
A olp B Nas ,
[33]. The relative amounts of the two phases in the coe:X|stare shown. The quantities, and n, are determined by

tehneciirr'r?gllgr;e(l);t?ogm order transition are expected to SatISf%valuation _of the integrated areAs andA, of the_Gal_Jss?an
its to the binary component peaks. The coexisting liquid and
| hexatic phase densities were determined to be 0.68 and 0.70,
Na _ s (5.7 respectively, while the corresponding coexisting hexatic and
g la solid phase densities are 0.83 and 0.87, respectively. At the

transitions between the coexisting phases, is further su
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FIG. 11. Two-dimensional scatter plots similar to those shown in Fig. 10, evaluated at the densities corresponding to liquid-hexatic

(p*=0.69, plots A, B, and Cand hexatic-solidp*=0.86, plots D, E, and JFcoexistence. In all cases, the data are well represented as
bimodal distributions. The dashed lines indicate the value of the corGtased to distinguish between possible coexisting phases in the
systems. They aréA) 1.4,(B) 1.0,(C) 12, (D) 1.8, (E) 1.2, and(F) 35.

same particle densities, the coexisting values of the bondamples, we now examine some issues associated with the
orientational order parameter are 0.28 and 0.61 for the liquidhterpretation of our experimental data.
and hexatic phases, respectively, and 0.63 and 0.75 for the A key element in our analysis is the identification of den-
hexatic and solid phases, respectively. The analogous coegities for which there is two-phase coexistence. Assignment
istence values of the characteristic times are 4.27 and 4.48cf a local region of the system to a particular phase depends
for the fluid-hexatic region, and 11.42 and 11.62 for theon the definition of a suitable descriptor for that phase. If that
hexatic-solid region. When the cited values of the transitiordescriptor, say the local density, has a bimodal distribution,
densities are substituted into £§.7), the lever rule is found it is plausible that the system examined does exhibit phase
to hold with a best accuracy of 1.7% and a worst accuracy ofoexistence. However, the existence of a bimodal distribu-
14%. tion of the local density in a finite sample is not, by itself,
conclusive evidence of two-phase coexistence. In principle,
V1. DISCUSSION to establish that a_bimodal_d!;tributipn of any single descrip-
tor of phase identity is definitive evidence of two-phase co-
The experiments described in the preceding sections afxistence it is necessary to show that the bimodal distribution
this paper establish the existence of first order solid-topersists in the thermodynamic limit, i.e., to study, at constant
hexatic and hexatic-to-liquid phase transitions in a pseudodensity, the system size dependence of the distribution. The
two-dimensional system of sterically stabilized PMMA col- evidence for the existence of two-phase coexistence at a par-
loidal particles. Bladon and Frenkel have shown, fromticular density in a finite sample can be strengthened by the
Monte Carlo simulations, that the behavior we observed is tause of multiple descriptors and a coincidence analysis. Our
be expected for particles which have an interaction potentialdentifications of the densities at which there is coexistence
which supports an isostructural solid-to-solid phase transibetween the solid and hexatic phases and between the
tion. Our findings are also in agreement with the results ohexatic and liquid phases have utilized a triple coincidence
the analytical studies of Chou and Neld@&}, who examined analysis. We have shown that for a particular overall sample
the consequences of modifying the conventional KTHNY density, the local density, the local bond orientational order
theory of two-dimensional melting to include coupling be- parameter, and the local diffusion coefficient are related by
tween an isostructural solid-to-solid phase transition and thene-to-one maps; that is, they simultaneously locate the same
strain fields in those solid phases. Because of the difficultiesegions in the images of the two-dimensional colloid system.
associated with establishing equilibrium in two-dimensionalWe have identified those regions with the relevant phases. In
systems, and the difficulties associated with establishing theontrast, the same triple coincidence analysis shows that
nature of the thermodynamic limit from examination of finite there is no correlation between these descriptors in the pure
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FIG. 12. Voronoi constructions of particle
configurations corresponding to the liquid
(p*=0.58, plots A, B, and € and hexatic
(p*=0.83, plots D, E, and Fphases. The gray
scale scheme indicates the partitioning of the par-
ticles between phases; the fluid phase is labeled
white, the hexatic phase is labeled light gray, and
solid phase is labeled dark gray. Plots A and D
correspond to the analysis of the joint distribu-
tions in local density, plots B and E correspond to
the analysis of the local bond orientational order
parameter, and plots C and F correspond to the
analysis of the local correlation times.

liquid phase. We believe that the results of the triple coinci-phase, is large enoudid~0.33 um?s) that a particle can
dence analysis provide very strong support for the inferencesiove a distance equal to 585 particle diameters in a typical
we have drawn concerning the occurrence of first ordef72-h run. This distance is also greater than the typical size of
phase transitions in the system studied. a one-phase region when there is hexatic-phase—solid-phase
As to the influence of finite sample size on the observedoexistence.
behavior, we have shown, in Sec. Il, that the translational In our experiments, each cell has a unique density, hence
and bond orientation correlation functions are independent ahe density dependence of the properties of the system is
subdivision of the video image of the sample system intostudied by assembling the data for a large number of cells.
subblocks, and that the correlation length for translationalAs stated in Sec. Il, although the method we used to adjust
order is small compared to the size of the sample video imthe sample cell thickness does not achieve uniform separa-
age. tion of the cell walls over the entire cell, the portion which is
We have noted that on the time scale of successive videthin enough to constrain the colloid particles to one plane
images of our system dislocations appear and disappear, andcupies the larger fraction of the total area of the cell. In
thus we inferred that our system is at equilibrium. That confact, in our system the fraction of the sample which is quasi-
clusion is supported by the observation that the effectivdawo-dimensional is large enough to be considered the reser-
diffusion coefficient of a dislocation is very large, since thevoir for the part of the sample that is thicker. Put another
appearance and disappearance of dislocations at uncorrelatedy, it is the chemical potential of the quasi-two-
positions in successive video frames implies an effective disdimensional portion of the colloid sample that determines the
placement per frame separation of the order of the size of thstate of the remainder, and not the reverse. We conclude that
video image. Therefore, during a typical 72-h run a dislocait is appropriate to interpret our results in terms of equilib-
tion can sample the entire area of a video image, and canum at constant density.
move a very large distance relative to the typical size of a One class of pair potentials that supports an isostructural
one-phase region when there is hexatic-phase—solid-phaselid-to-solid transition consists of a strongly repulsive core
coexistence. In the worst case, in which equilibrium must beand a very short-ranged attractive wédir repulsive step
established by particle displacements, we note that the diffuSimulations of two- and three-dimensional systems with a
sion coefficient of a colloid particle in, say, the hexatic pair interaction of this type show that the isostructural tran-
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FIG. 13. Voronoi constructions of particle
configurations corresponding to the liquid-hexatic
(p*=0.69, plots A, B, and T and hexatic
(p*=0.86, plots D, E, and Jcoexistence regions.
As in Fig. 12, the gray scale scheme indicates the
partitioning of the particles between phases. The
plot ordering is the same as that shown in Fig. 12.

sition disappears from the phase diagram when the ratio ofhe former case is usually the only one considered,; it always
the width of the attractive wellor the repulsive stepo the  arises when there is no difference between the energies of
repulsive core diameter exceeds a small critical value, whiclechain element-chain element interaction and chain element-
is about 0.08 for the two-dimensional hard disk plus squaresolvent interaction(the so-called athermal limit The latter
well interaction. We now examine the extent to which thecase can in principle occur over a small range of brush in-
effective interaction between the particles in the system weerpenetration near the onset of brush-brush contact, if the
have studied satisfies the conditions under which one cachain-element—chain-element interactions are more favor-
reasonably expect the simulations of Bladon and Frenkel table than chain-element—solvent interactions.
be applicable. Calculations of the interaction between interpenetrating
The quasi-two-dimensional system we have studied conbrushes in the athermal limit have been reported by Martin
sists of sterically stabilized PMMA spheres. The steric stabiand Wang[34]. They show that the segment density profile
lization is achieved by grafting long chain molecules to thealong the normal to the surface is sensibly unaffected by
surface of each sphere; in our sample these chains createbeush-brush interpenetration in the limit of very large chain
brush with height about 300 A. The effective interaction be-length, and is increasingly affected as the chain length de-
tween a pair of sterically stabilized PMMA spheres then hasreases. In particular, for chains of about the same length as
a hard core with a diameter of aboutgm and a softer used in the stabilization of our PMMA particles, overlap of
interaction with a range of about 0.Q6n. The softer inter- the tails of the segment density profile creates a weak repul-
action, which is generated by the compression of the longion before the main parts of the brushes overlap; the repul-
chain brushes grafted to the surface of the PMMA particle, isive force grows rapidly after the main parts of the brushes
repulsive over most or all of its range. If the long chains dooverlap. For our system the chain-element—chain-element in-
not interpenetrate when the brushes begin to overlap, theractions are expected to be more favorable than chain-
interaction generated by the compression of the brush islement—solvent interactions, so we expect that the overlap
positive everywhere because of the loss of chain configuraaf the tails of the segment density distribution will create a
tional entropy which accompanies the brush compression. Mveak attraction before the main parts of the brushes overlap.
the long chains do interpenetrate when the brushes begin #ccepting this expectation, the effective particle-particle in-
overlap, the interaction can be either repulsive or attractiveteraction in our system will have a weak and narrow attrac-
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FIG. 14. Results of triple coincidence analysis
using Voronoi constructions of particle configu-
rations as a function of particle density. The gray
scale scheme is determined by the intersection
between the three joint probability distributions,
P(l#el,my), P(p,m,), andP(7,m,). The den-
sities corresponding to A—F are the same as in
Figs. 4A-4F.
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FIG. 15. Decomposition of local densifplots A and B and bond orientatioiiplots C and D distributions according to the analysis
described in the text. An example of both liquid-hexdpt =0.693, plots A and Cand hexatic-solidp* =0.857, plots B and Ddensities
are shown. The solid curves are best-fit Gaussian functions to the component distributions. Their peak pasiticiesdashed lingsand
integrated areas give the values of the coexisting pure phase densities and the relative number of particles that occupy each phase. The
complete results of our analysis are listed in Tables IV and V.
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TABLE V. Lever rule analysigsee Eq.(5.7)] is the areal den-
sity; the A, are the integrated areas of the Gaussian fits to the sepa-
rate peaks in the local density distributions; the-|—;| as de-
scribed in the text. The subscript numbers indicate the peaks
corresponding to the phases as identified in Table IV.

U/k,T

A A, I1 [P n,/ny 14/, % error

0.6887
0.6926
0.8459
0.8567

11.961
11.550
12.630

6.520

4.510
4.850
7.610
13.680

0.0067
0.0096
0.0119
0.0037

0.0153
0.0044
0.0201
0.0083

0.377
0.420
0.602
0.477

0.438 14
0.458 8
0.592 1.7
0.446 6.5

0
o —»I_-— 001-0.026

FIG. 16. Schematic representation of the pair potential conjec-
tured to support a two-dimensional isostructural solid-solid phaséf the parameters that define the potential have appropriate
transition. The attractive contribution occurs between &.@éd  values. We conjecture that there is an as yet unobserved
1.060, and is due to a favorable enthalpic interaction between thésostructural solid phase to solid phase in our system, and
segments of the brush polymers that coat the colloidal particles. Athat the conditions under which our experiments have been
shorter interparticle separations, the polymer chains collapse, corrgpnducted place the system in the domain where critical
sponding to a loss of configurational entropy and a rapid increase qoint fluctuations associated with the isostructural solid-to-
the pair potential. solid phase transition drive the formation of the hexatic
phase. Note, however, that the values of the parameters spe-
tive well located at about 1.06 particle diameters, a rapidiycific to our case are not known and no simulations which
increasing repulsive interaction between 1.00 and, say, 1.04verify our conjecture have been carried out to date.
1.05 particle diameters, and a hard core repulsion at 1.00 It is worth noting that in our experiments the medium in
particle diameters. A cartoon representation of such a paivhich the PMMA particles are suspended in an aqueous su-
potential is shown in Fig. 16. A potential of this form has thecrose solution. We have considered the possibility that the
qualitative features, and a range relative to the hard coreolubility of the sucrose in the brush plus solvent immedi-
repulsion, to support an isostructural solid-to-solid transitionately adjacent to the PMMA particle is different from that in

TABLE IV. Average values and standard deviations of order parameter distributions. The densities are

those described in Table p. is the local areal densitlEq. (3.5)], ¢ is the local bond orientational order
parametefEqg. (5.1)], and 7 is the local correlation time given in units of sgeq. (5.2)].

Thermodynamic

state {p) rmsp () rms i (D msr
0.011 dilute liquid ~ ~ ~ ~ 1.0 1.6
0.077 dilute liquid 0.176 0.076 0.285 0.192 3.0 2.1
0.241 dilute liquid 0.239 0.075 0.293 0.186 104 6.3
0.504 liquid 0.508 0.071 0.342 0.206 2.0 1.2
0.581 dense liquid 0.590 0.067 0.351 0.224 1.0 0.7
0.689 liquid-hexatic 0.692 0.066 0.420 0.306 4.31 2.1
coexistence
peak 1 0.682 0.068 0.277 0.240 4.24 1.98
peak 2 0.704 0.059 0.608 0.123 4.47 2.30
0.693 liquid-hexatic 0.694 0.081 0.501 0.329 4.26 2.08
coexistence
peak 1 0.683 0.061 0.321 0.189 4.29 1.99
peak 2 0.697 0.049 0.710 0.178 4.50 2.27
0.831 hexatic 0.833 0.071 0.62 0.316 5.21 3.1
0.846 hexatic-solid 0.850 0.064 0.665 0.201 11.44 5.4
coexistence
peak 1 0.834 0.067 0.630 0.193 11.39 6.1
peak 2 0.866 0.052 0.753 0.188 11.58 5.2
0.857 hexatic-solid 0.859 0.068 0.688 0.225 11.61 5.8
coexistence
peak 1 0.853 0.076 0.635 0.218 11.44 6.2
peak 2 0.865 0.058 0.751 0.222 11.65 5.5
0.874 solid 0.878 0.053 0.63 0.12 19.6 9.66
0.926 solid 0.932 0.042 0.65 0.23 95.7 31.9
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the bulk medium, but have been unable to devise a schensystem might be a signal of the nonuniversality of the two-
whereby this differential solubility, if it existed, would gen- dimensional melting transition, or it might result from re-
erate a free energy as a function of particle separation thatrictions on the regions of the thermodynamic parameter
resembles the functional form needed. space available for realizable systems. The latter view is con-
A comparison of the experiments that verify the predic-sjstent with the results of Fisher and co-workgss], who
tions of the original KTHNY theory and the experiments showed that a two-dimensional assembly of polarizable ions
reported in this paper, the simulations of Bladon and Frenkejith allowed ion pairing has an insulating-to-conducting
and the analytic theory of Chou and Nelson, suggest an agshase transition which is first order below a tricritical point,
parent richness of pathways associated with the melting trangnd of continuous Kosterlitz-Thouless type for temperatures
sition in two dimensions. Although there are several knownghove, and densities below, that tricritical point.
isostructural  solid-solid phase transitions in three-
dimensional systems, the melting transitions in those systems
are not qualitatively different from melting in any other ACKNOWLEDGMENTS
three-dimensional system. Indeed, the experimental evidence
is that the melting transitions in all three-dimensional sys- Support for the research reported in this paper was pro-
tems are first order, no matter what the potential energy funcvided by the Materials Science and Engineering Research
tion. In contrast, the pathway associated with two-Center at the University of Chicago, which is funded by the
dimensional melting does exhibit a dependence on th&ational Science Foundation through Grant No. DMR-
character of the intermolecular potential, as demonstrated 9400379, and by National Science Foundation Grant No.
the difference between our results and those, for differenCHE-9528923. We thank Professor David Grier for advice
systems, in which melting involves sequential continuousand technical assistance and Professor David Nelson for
transitions. This apparent dependence of the melting patcomments which deepened and improved our interpretation
way on the intermolecular potential in a two-dimensionalof the experimental results.
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